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OPERATION OF DISTRIBUTED GENERATION UNDER

STOCHASTIC PRICES

AFZAL SIDDIQUI AND CHRIS MARNAY

Abstract. We model the operating decisions of a commercial enterprise that
needs to satisfy its periodic electricity demand with either on-site distributed
generation (DG) or purchases from the wholesale market. While the former
option involves electricity generation at relatively high and possibly stochastic
costs from a set of capacity-constrained DG technologies, the latter implies
unlimited open-market transactions at stochastic prices. A stochastic dynamic
programme (SDP) is used to solve the resulting optimisation problem. By
solving the SDP with and without the availability of DG units, the implied
option values of the DG units are obtained.

1. Background

The deregulation of electricity industries worldwide has brought market forces
into a sector that was once state regulated. This liberalisation has often resulted
in the divestiture of utility-owned power plants to private companies that will use
these assets to sell power at volatile market prices. Consequently, market-based
methods are necessary in the deregulated environment to value power plants and
price the various electricity products. Towards this end, techniques developed to
price financial instruments, such as options, have been applied to electricity mar-
kets. For example, [4] finds a closed-form solution for the value of a power plant
under the assumption that operating constraints are not significant and both elec-
tricity and gas prices evolve randomly. The analysis is done for both correlated
geometric Brownian motion (GBM) and Ornstein-Uhlenbeck (OU) specifications.1

This work was extended in [5] to incorporate operating constraints and finds that
the power plant is over-valued more under an assumption of OU prices because
the operational constraints together with the lower spark spread, resulting from
mean-reverting prices, force the plant to be turned on and off more frequent. It,
therefore, incurs greater start-up costs than under an assumption of GBM prices.
Furthermore, more efficient plants have higher values under OU rather than GBM
assumptions (and vice versa) since the lower heat rates associated with higher ef-
ficiency more than compensate for the more frequent changes in operating levels
necessitated by mean-reverting prices. On the other hand, the higher heat rates for
less efficient plants valued under OU assumptions exacerbate the consequences of
the required changes in operating levels. In this case, a lattice-based approach was
taken that discretises the underlying stochastic processes and writes a stochastic

Date: 29 November 2005.
Key words and phrases. Distributed generation, stochastic dynamic programming.
1In the former process, successive percentage changes in the value of one quantity are indepen-

dent of each other, while in the latter, the values tend to revert to long-term mean. While the OU
process is more representative of energy prices, the GBM one is more straightforward to model.
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dynamic programme (SDP) on them that is solved using backward induction (see
[3] or [9]) for the development of one-dimensional lattices under the assumption of
GBM, [1] or [2] for multinomial lattice techniques involving GBMs, and [6] for a
lattice technique to model a combined GBM-OU process). Finally, [8] and [12] use
this real options framework for investment and short-term operation implications,
respectively.

While deregulation has liberalised the rules governing plant ownership, it has
also opened up the possibility for distributed generation (DG) to be installed. Such
small-scale, on-site generators could potentially provide a more efficient means for
end-use consumers to meet their energy loads than traditional central generation
(see [10] and [11] for customer adoption and operation of DG in deterministic set-
tings). With this alternative available to the traditional paradigm, how would
a rational investor value a portfolio of generators rather than individual power
plants? This paper addresses the following problem: imagine that you must meet
a deterministic load during each period of a month via either electricity purchases
at stochastic spot market prices or a portfolio of DG units. The spot market price
evolves according to a GBM, whereas the costs of the DG units are relatively high
and can be either deterministic or stochastic according to a GBM correlated with
the spot market price as well. In this instance, we use a portfolio of two DG units,
one with stochastic generating costs and the other with deterministic ones. Effec-
tively, the former can be thought of as a reciprocating engine running on natural
gas, whereas the latter could be a more costly technology such as a fuel cell (FC).
This is a simple model in which a linear programme is solved at each node of the
resulting lattice to minimise the expected cost of meeting the annual load.

The objective of this study, therefore, is to determine how the implied option
values of the DG units change if the NG price is allowed to be stochastic. Further-
more, it addresses whether a portfolio of options on the underlying DG units can
be used to approximate the option value of a portfolio of DG units. The effects of
operational constraints and stochastic NG prices on this discrepancy will also be
analysed.

2. Mathematical Formulation

2.1. Parameters. We begin by defining the following parameters:

• T : time horizon in years
• ∆t: length of time interval in years
• N = T

∆t
: number of decision-making steps over the time horizon

• s(k, i): spot market price in e/kWh during period k given that there have
been i upward movements (in the spot market price), where 0 ≤ k ≤ N
and 0 ≤ i ≤ k

• cNG(k, j): cost in e/kWh of using the reciprocating engine during period
k given that there have been j upward movements (in the NG price), where
0 ≤ k ≤ N and 0 ≤ i ≤ k

• cFC : deterministic cost in e/kWh of using the FC
• p1: risk-neutral probability of upward movements in both the spot market

price and the generating cost of the reciprocating engine
• p2: risk-neutral probability of an upward movement in the spot market

price and a downward movement in the generating cost of the reciprocating
engine
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• p3: risk-neutral probability of a downward movement in the spot market
price and an upward movement in the generating cost of the reciprocating
engine

• p4: risk-neutral probability of downward movements in both the spot mar-
ket price and the generating cost of the reciprocating engine

• σ1: standard deviation of the percentage changes in the spot market price
process

• σ2: standard deviation of the percentage changes in the reciprocating engine
generating cost process

• u1 = eσ1

√

∆t: jump size for the spot market price process

• u2 = eσ2

√

∆t: jump size for the reciprocating engine generating cost process
• ρ: the degree of correlation between the spot market price and the recipro-

cating engine generating cost
• `(k): electricity demand in kWh during period k
• z(m): maximum capacity in kW of DG unit m, where m ∈ {NG, FC}
• 0 ≤ z(m) ≤ z(m): minimum capacity in kW of DG unit m, where m ∈
{NG, FC}

• α: risk-free interest rate per annum
• µ1 = α − 0.5σ2

1 : risk-free drift rate for the spot market price process
• µ2 = α − 0.5σ2

2 : risk-free drift rate for the reciprocating engine generating
cost process

• β = e−α∆t: discount factor over one time step
• υ = 8760: number of hours per year

2.2. Price Processes. We now assume that both the electricity spot market price
and the NG price follow correlated GBM processes as follows:

dst = µ1stdt + σ1stdzs

dct = µ2ctdt + σ2ctdzc

Here, dzs and dzc are GBMs with instananeous correlation ρ. Using the approach
of [2], these continuous-time processes can be approximated by discrete jumps so
that given the price vector at time k for i upward movements in the spot market
price and j upward movements in the NG price, (s(k, i), cNG(k, j)), there are four
possible states to reach by time k + 1:

{(s(k, i)u1, cNG(k, j)u2) ,

(s(k, i)u1, cNG(k, j)d2) ,

(s(k, i)d1, cNG(k, j)u2) ,

(s(k, i)d1, cNG(k, j)d2)}

In effect, the two correlated price processes are discretised along a multinomial lat-
tice in which the prices at any state (i, j) are s(k, i) = s(0, 0)ui

1d
k−i
1 and cNG(k, j) =

cNG(0, 0)uj
2d

k−j
2 , where d1 ≡ 1/u1 and d2 ≡ 1/u2. The risk-neutral probabilities of
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movements in the lattice are indicated as follows:

p1 =
1

4

(

1 + ρ +
√

∆t

(

µ1

σ1
+

µ2

σ2

))

p2 =
1

4

(

1 + ρ +
√

∆t

(

µ1

σ1
− µ2

σ2

))

p3 =
1

4

(

1 + ρ +
√

∆t

(−µ1

σ1
+

µ2

σ2

))

p4 =
1

4

(

1 + ρ +
√

∆t

(−µ1

σ1
− µ2

σ2

))

2.3. Decision Variables. The decision variables needed for the SDP are as fol-
lows:

• x(k, i, j): electricity capacity purchased in kW from spot market during
period k in state (i, j)

• y(k, m, i, j): electricity capacity provided in kW by DG unit m during
period k in state (i, j)

2.4. Value Function. We define the value function for the SDP as follows:

• V (k, i, j): minimum expected discounted cost to go in period k given that
i upward steps in the spot market price and j upward steps in the recipro-
cating engine cost process have occurred

2.5. SDP. A SDP is now formulated to minimise the expected discounted cost of
meeting the electricity load given the capacity constraints of the DG units and a
prohibition against selling back to the grid:

• SDP recursion for 0 ≤ k < N , 0 ≤ i ≤ k, and 0 ≤ j ≤ k:

V (k, i, j) = min
x(k,i,j),y(k,m,i,j)

{s(k, i)x(k, i, j)∆tυ + cNG(k, j)y(k, NG, i, j)∆tυ

+cFCy(k, FC, i, j)∆tυ|x(k, i, j)∆tυ + y(k, NG, i, j)∆tυ

+y(k, FC, i, j)∆tυ = `(k), z(m) ≤ y(k, m, i, j) ≤ z(m), x(k, i, j) ≥ 0}
+β{p1V (k + 1, i + 1, j + 1) + p2V (k + 1, i + 1, j)

+p3V (k + 1, i, j + 1) + p4V (k + 1, i, j)}

• Terminal condition for 0 ≤ i ≤ N and 0 ≤ j ≤ N :

V (N, i, j) = 0

• Answer:

V (0, 0, 0)

At each node of the multinomial lattice, the SDP selects the minimum-cost way
to meet the electricity demand during the corresponding period via spot market
purchases or constrained DG units and adds to this cost the expected discounted
cost of following such an optimal policy in subsequent periods. It is solved using
backward induction by starting at period N .
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3. Numerical Example

In order to illustrate the method, we implement it for some hypothetical data.
We assume that the time horizon to be analysed is thirty days long, i.e., T =
30
365 , and that a dispatch decision is made on a daily basis, i.e., N = 30 or the
length of each time step, ∆t, is twenty-four hours. The initial spot market price of
electricity is s(0, 0) = e0.045/kWh and that two DG units are installed: one is a
NG-fired reciprocating engine with a capacity of 200kW and initial operating cost
of cNG(0, 0) = e0.0475/kWh, and the other is a FC with a capacity of 100kW and
a constant operating cost of cFC = e0.0525/kWh. The risk-free interest rate is
2.4% per annum, and the volatilities of the electricity and NG prices are both 98%
per annum, although we allow that of electricity to increase up to a level of 196%
per annum.2 In addition, we assume a correlation coefficient of 0.50 between the
electricity and NG prices. Finally, the electricity demand is indicated in Figure 1.
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Figure 1. Daily Demand

The implied option value of each DG unit and the portfolio of units is determined
by first solving the SDP with all DG units switched off and then subtracting from
this cost the value of the objective function when the DG unit(s) is (are) allowed to
operate. The option value per kW is then calculated by dividing the cost savings
under that scenario by the total DG capacity available. For example, in order to
find the implied option value per kW of the NG unit, we first run the model with
the NG unit switched off and find the minimised cost. Next, we run the model with
the NG unit available up to its capacity limit and find the minimised cost under this
scenario. Finally, we divided the cost difference between these two runs by the total
available capacity, i.e., 200kW, to determine the implied option value per kW. We

2Such high volatilities are necessary over such a short time horizon, otherwise the DG units
will never be deployed.



6 AFZAL SIDDIQUI AND CHRIS MARNAY

perform this analysis and find that the implied option value of the NG unit increases
with electricity price volatility as expected, although the value is decreased if the NG
price is allowed to be stochastic (see Figure 2). Intuitively, as the electricity price
becomes more volatile, it becomes more likely that it will exceed the NG “strike
price.” Consequently, the NG unit will be dispatched more frequently. However,
if the NG price is stochastic as well, then due to the positive correlation between
it and the electricity price, there will be fewer nodes in the lattice at which it will
be beneficial to dispatch the NG unit. As a result, the implied option value will be
smaller than in the deterministic NG case. Nevertheless, increasing the volatility
of the electricity price while keeping that of the NG price constant will still result
in a monotonically increasing implied option value.
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Figure 2. Implied Option Value of the NG Unit

If the 200kW NG unit is installed in combination with a 100kW FC, then the
implied option value of the portfolio of generators can be determined analogously.
It is important to note, however, that this value will generally not be the same
as the weighted (by the capacities) average of the implied option values of the
individual DG units. In fact, the weighted average will usually overstate the implied
option value of the portfolio of DG units because the former technique does not
recognise that the cheaper DG unit, i.e., usually the NG one, will “crowd out”
the more expensive one. Therefore, some of the value of the 100kW FC will be
lost as the 200kW NG unit will always be dispatched ahead of it in case of high
electricity prices. For example, if NG prices are deterministic and the electricity
price has a volatility of 98%, then the implied option values for the NG unit and
FC are e1.17/kW and e0.76/kW, respectively, resulting in a capacity-weighted
average value of e1.03/kW.3 The implied option value when these two DG units

3This is simply 200∗1.17+100∗0.76

200+100
.
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are operated together in a portfolio, however, is e0.82/kW, thereby implying an
overstatement of 26% if the capacity-weighted approximation is used. Furthermore,
this overstatement increases with the volatility of the electricity price because higher
volatility implies that the NG unit will be more likely to be dispatched, and hence,
more likely to “crowd out” the FC. Finally, this “crowding out” effect is at a
decreasing rate because as the electricity price volatility becomes very high, the
capacity limit on the NG unit is reached, which eliminates its ability to affect the
dispatch of the FC (see Figure 3).
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Figure 3. Overstatement of the Implied Option Value of a Port-
folio of DG Units Under Deterministic NG Prices

This discrepancy between the implied option value of a portfolio of DG units
and the capacity-weighted approximation increases if the NG unit is forced to run
at a minimum of 50kW. For example, for electricity price volatility of 98%, the
implied option values for the NG unit under the minimum run-time constraint and
FC are e0.31/kW and e0.76/kW, respectively, resulting in a capacity-weighted
average value of e0.46/kW, whereas the implied option value of the portfolio is
e0.25/kW. Now, the lower bound on NG generation reduces value by removing
some flexibility from operations, i.e., by forcing the NG unit to be running even
when it is not economical, which causes the overstatement to be higher than in
the unconstrained case. Unlike the unconstrained case, however, the overstatement
here decreases with electricity price volatility because the “crowding out” effect
does not strengthen. Indeed, if the electricity price volatility increases from 96% to
112%, the NG unit will not be able to reduce the FC’s share of generation because
the latter was already so low. At the same time, this increase in electricity price
volatility increases the implied option value of the portfolio of DG units, thereby
decreasing the overstatement (see Figure 3).
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Under stochastic NG prices, the overstatement with the capacity-weighted ap-
proximation is reduced vis à vis the case with deterministic NG prices. This follows
because uncertain NG prices imply that the NG unit will be less likely to be eco-
nomical relative to market-procured electricity. Therefore, it will be less likely to
“crowd out” the FC, thereby reducing the magnitude of the overstatement. Sim-
ilar to the deterministic case, a 50kW minimum run-time constraint on the NG
unit increases the magnitude of the overstatement. In contrast to the deterministic
case, here, the uncertainty in the NG price does not result in immediate “crowding
out” of the FC unit. Therefore, increases in the electricity price volatility cause
it to be more “crowded out,” which then reduces the value of the portfolio to DG
units relative to the capacity-weighted approximation value (see Figure 4). Hence,
using the capacity-weighted approximation to calculate the implied option value of
a portfolio of DG units is more accurate when the NG prices are modelled as being
stochastic.
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Figure 4. Overstatement of the Implied Option Value of a Port-
folio of DG Units Under Stochastic NG Prices

4. Discussion

In this paper, we develop a simple model to determine the implied option value of
a portfolio of DG units. We find that the value of any individual unit increases with
electricity price volatility and is reduced if the fuel price for that unit is stochastic.
Furthermore, we find that using a capacity-weighted portfolio of options overstates
the implied option value of the portfolio because it ignores the “crowding out” of
the more expensive DG unit by the less expensive one. This effect is amplified with
the imposition of minimum run-time constraints and mitigated when the input fuel
price is stochastic. Intuitively, the former reduces the flexibility of the DG units,
and the latter reduces the “crowding out” effect.
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For future work, it would be interesting to explore a longer time horizon than one
month. Indeed, analysing the investment decision would involve a more long-term
study. In this case, the multinomial lattice technique would be computationally
infeasible, and least-squares Monte Carlo simulation, as developed in [7], would
be required. Other enhancements should include a mean-reverting OU process for
the logarithm of the spot market price and other operational constraints, such as
ramping times, start-up costs, and variable heat rates.

References

1. Boyle, PP (1988), “A Lattice Framework for Option Pricing With Two State Variables,”
Journal of Financial and Quantitative Analysis, 23(1): 1–12.

2. Boyle, PP, J Evnine, and S Gibbs (1989), “Numerical Evaluation of Multivariate Contingent
Claims,” The Review of Financial Studies, 2(2): 241–250.

3. Cox, JC, SA Ross, and M Rubinstein (1979), “Option Pricing: A Simplified Approach,”
Journal of Financial Economics, 7(3): 229–263.

4. Deng, S-J, B Johnson, and A Sogomonian (2001), “Exotic Electricity Options and the Valu-
ation of Electricity Generation and Transmission Assets,” Decision Support Systems, 30(3):
383–392.

5. Deng, S-J and SS Oren (2003), “Incorporating Operational Characteristics and Startup Costs
in Option-Based Valuation of Power Generation Capacity,” Probability in the Engineering

and Informational Sciences, 17(2): 155–181.
6. Hahn, WJ and JS Dyer (2004), “A Discrete-Time Approach for Valuing Real Options with Un-

derlying Mean-Reverting Stochastic Processes,” working paper, University of Texas, Austin,
TX, USA.

7. Longstaff, FA and ES Schwartz (2001), “Valuing American Options by Simulation: A Simple
Least-Squares Approach,” The Review of Financial Studies, 14(1): 113–147.
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